John Schulman on scaling RL and research institutions
The following is a summary of the key points from the interview with Sam Altman (assumed to be the AI researcher mentioned in the document):
1. AI Development and Technological Trends
- Computing Power vs. Technical Methods:
Sam believes that AI progress is not solely dependent on computing power; technical method optimization (e.g., post-training techniques, fine-tuning data construction) is equally critical. For example, the birth of ChatGPT may have occurred earlier than the current computing power level, indicating that technological breakthroughs require appropriate prerequisites. - AGI Timeline Prediction:
Researchers generally underestimate the time required to achieve AGI; predictions should be extended by 2-3 times (e.g., the case of autonomous driving). However, the self-accelerating effect of AI may shorten the timeline, leading to uncertainty in predictions.
2. Tinker Product and AI Fine-Tuning Innovation
- Tinker’s Core Positioning:
As a foundational fine-tuning API, Tinker provides small primitives (e.g., training and sampling tasks), allowing users to directly call them via Python scripts without handling the complexity of GPUs/distributed systems, thereby lowering the threshold for AI model fine-tuning. - Future Plans:
- Support multi-modal training (text, image, audio, video).
- Expand into a full-stack solution, enabling non-experts to rapidly build customized models.
- Lower the threshold for AI entrepreneurship, allowing entrepreneurs to focus on model innovation rather than底层 computing power issues.
3. Research and Work Methods
- AI Tools for Research:
- Use tools like Cursor, Claude Code to program, generating code snippets or supplementing research content.
- Efficiency in literature retrieval and open-source library searches is significantly improved.
- Work Routine:
- Prefers thinking in cafes, away from distractions, to record inspirations.
- During project execution, deep reading of code/documentation is required to guide others in research.
4. Observations on AI Research Trends
- Surge in Researchers but Stable Breakthroughs:
- The rigor of experiments in 70-90s papers was lower, whereas today’s standards are higher (e.g., multi-task benchmark tests).
- Scaling and engineering drive domain maturity, eliminating the need to write code from scratch, relying instead on existing tools and codebases.
- Shift in Skill Requirements:
- Engineering skills have become more critical, while research taste has relatively declined (simple ideas can achieve significant results through scaling).
5. Views on the Future of AI
- Technical Methods Take Center Stage:
Sam emphasizes that the future of AI depends more on optimizing technical methods and research taste rather than purely relying on computing power. - Revival of Classic Concepts:
Forgotten theories (e.g., early reinforcement learning methods) may regain attention due to new demands or technological maturity.
Summary
Sam’s interview highlights the multidimensional development path of AI technology:
- Tool Innovation (e.g., Tinker) lowers technical barriers, driving application implementation;
- Research Method Optimization (e.g., experimental rigor, engineering) enhances domain maturity;
- Balancing Computing Power and Technology, avoiding over-reliance on a single factor.
His insights provide practical directions and thinking frameworks for AI researchers, developers, and entrepreneurs.
Translation
以下是关于Sam Altman(假设为文档中提到的AI研究者)的访谈内容核心要点总结:
1. AI发展与技术趋势
- 算力 vs 技术方法:
Sam认为AI的进步并非单纯依赖算力,技术方法优化(如后训练技术、微调数据构建)同样关键。例如,ChatGPT的诞生可能早于当前算力水平,说明技术突破需要合适的前提条件。 - AGI时间线预测:
研究人员普遍低估了实现AGI的时间,需将预测时间延长2-3倍(如自动驾驶的案例)。但AI的自我加速效应可能缩短时间线,导致预测存在不确定性。
2. Tinker产品与AI微调创新
- Tinker的核心定位:
作为底层微调API,Tinker提供小型原语(如训练和采样任务),用户可通过Python脚本直接调用,无需处理GPU/分布式系统复杂性,降低AI模型微调门槛。 - 未来规划:
- 支持多模态训练(文本、图像、音频、视频)。
- 扩展为全栈解决方案,使非专家用户也能快速构建定制模型。
- 降低AI创业门槛,让创业者专注于模型创新而非底层算力问题。
3. 研究与工作方法
- AI工具辅助研究:
- 使用Cursor、Claude Code等工具编程,通过AI生成代码片段或补充研究内容。
- 文献检索和开源库查找效率大幅提升。
- 工作日常:
- 喜欢在咖啡馆思考,远离干扰,记录灵感。
- 项目执行阶段需深入阅读代码/文档,指导他人研究。
4. AI领域研究趋势观察
- 研究者数量激增但突破速度稳定:
- 70-90年代的论文实验严谨性较低,而如今标准更高(如多任务基准测试)。
- 规模化和工程化推动领域成熟,无需从零编写代码,依赖现有工具和代码库。
- 技能需求变化:
- 工程技能重要性上升,研究品味相对下降(简单想法通过规模化可取得显著成果)。
5. 对AI未来的看法
- 技术方法回归:
Sam更倾向于认为AI的未来取决于技术方法和研究品味的优化,而非单纯算力堆砌。 - 经典理念的复兴:
被遗忘的理论(如强化学习早期方法)可能因新需求或技术成熟而重新被重视。
总结
Sam的访谈强调了AI技术的多维发展路径:
- 工具创新(如Tinker)降低技术门槛,推动应用落地;
- 研究方法优化(如实验严谨性、工程化)提升领域成熟度;
- 算力与技术的平衡,避免过度依赖单一因素。
他的观点为AI研究者、开发者和创业者提供了实践方向和思考框架。
Reference:
https://www.youtube.com/watch?v=29BYxvvF1iM