Article Summary
Anthropic has donated the MCP (Multi-Context Protocol) protocol to the Agentic AI Foundation under the Linux Foundation, marking a key interface protocol for the AI Agent era shifting from corporate proprietary ownership to industry standards. MCP addresses the issue of developers redundantly writing integration code by standardizing the connection between AI models and data sources. Its openness and neutrality attract collaboration from industry giants, promoting AI interoperability. The article also discusses technical challenges MCP faces, such as security and context inflation, and outlines future application scenarios like AI collaboration and rich media interaction, emphasizing the profound impact of open-source protocols on the technology ecosystem.


Key Points

  • Origin and Goals of MCP
    • MCP originated from Anthropic engineers solving inefficiencies in connecting Claude models with internal tools, initially as an internal tool called Claude Connect, later evolving into a general standard CSP (Context Server Protocol).
    • The goal is to reduce redundant integration code writing by developers, enabling AI models to seamlessly connect to various data sources (e.g., Postgres, Slack, Google Drive) through standardized interfaces.
  • Technical Principles and Architecture
    • MCP defines three core roles: host (AI client like Claude Desktop), server (lightweight program connecting to data sources), and client (communication component between host and server).
    • Analogous to the USB-C interface, MCP serves as a universal connection layer, allowing AI to access data sources (e.g., databases or Excel) without caring about their type, simply through a standard protocol.
  • Background of Donating to the Linux Foundation
    • To avoid technological monopolies, Anthropic chose to open-source MCP, inviting developer communities to participate and establish a de facto standard.
    • The new Agentic AI Foundation under the Linux Foundation promotes AI autonomy and long-term task planning capabilities, with MCP becoming its core protocol.
  • Technical Challenges and Solutions
    • Security: Prevents prompt injection attacks through “human-in-the-loop” mechanisms (e.g., pop-up confirmations for sensitive operations) and granular permission controls (read-only/write separation).
    • Context Inflation: Development tool search mechanisms dynamically load tool definitions instead of loading all documents at once, saving context window space.
    • Stateful Communication: Maintains long connections via JSON-RPC, enabling collaboration between AI Agents (e.g., interaction between code-writing and security-testing Agents).
  • Future Application Scenarios
    • AI Collaboration: AI Agents call tools via MCP to complete complex tasks (e.g., in-depth industry research).
    • Rich Media Interaction: MCP Apps allow servers to return UI components (e.g., flight seat selection diagrams), enhancing user experience.
    • User Impact: Ordinary users will experience seamless AI integration with tools (e.g., Notion, Excel, smart homes) without directly interacting with底层 protocols.
  • Significance of Open-Source and Standardization
    • Analogous to TCP/IP and USB standards, MCP may become an invisible infrastructure in the future, promoting AI technology democratization rather than being limited to developers alone.

Reference Documents and Links

  • Linux Foundation: https://www.linuxfoundation.org/
  • Agentic AI Foundation: https://agentic.ai/ (Note: Verify the actual official website link)
  • Related Technologies:
    • Kubernetes (Container Orchestration): https://kubernetes.io/
    • PyTorch (Deep Learning Framework): https://pytorch.org/
    • JSON-RPC (Remote Procedure Call Protocol): https://www.jsonrpc.org/

(Note: The text does not directly mention specific links, but the mentioned organizations and technical frameworks can serve as reference backgrounds.)

Translation

文章总结
Anthropic将MCP(Multi-Context Protocol)协议捐赠给Linux基金会旗下的Agentic AI Foundation,标志着AI Agent时代的关键接口协议从企业私有化转向行业标准。MCP通过标准化连接AI模型与数据源,解决了开发者重复编写集成代码的问题,同时通过开放性和中立性吸引行业巨头合作,推动AI互联互通。文章还探讨了MCP面临的安全性、上下文膨胀等技术挑战,并展望了未来AI协作、富媒体交互等应用场景,强调开源协议对技术生态的深远影响。


关键点

  • MCP的起源与目标
    • MCP源于Anthropic工程师为解决Claude模型与内部工具连接效率低的问题,最初是内部工具Claude Connect,后演变为通用标准CSP(上下文服务器协议)。
    • 目标是减少开发者重复编写集成代码,通过标准化接口让AI模型无缝连接各类数据源(如Postgres、Slack、Google Drive等)。
  • 技术原理与架构
    • MCP定义了三个核心角色:主机(AI客户端如Claude Desktop)、服务器(轻量级程序对接数据源)、客户端(主机与服务器的通信组件)。
    • 类比USB-C接口,MCP作为通用连接层,让AI无需关心数据源类型(如数据库或Excel),只需通过标准协议访问。
  • 捐赠Linux基金会的背景
    • 为避免技术垄断,Anthropic选择开放MCP,吸引开发者社区参与,形成事实标准(De Facto Standard)。
    • Linux基金会的新组织Agentic AI Foundation推动AI自主性与长程任务规划能力,MCP成为其核心协议。
  • 技术挑战与解决方案
    • 安全性:通过“人在回路”机制(如弹窗确认敏感操作)和细粒度权限控制(只读/读写分离)防范提示注入攻击。
    • 上下文膨胀:开发工具搜索机制,动态加载工具定义而非一次性加载所有文档,节省上下文窗口。
    • 有状态通信:基于JSON-RPC维护长连接,支持AI Agent间协作(如代码编写与安全测试Agent的交互)。
  • 未来应用场景
    • AI协作:AI Agent间通过MCP互相调用工具,完成复杂任务(如深度行业调研)。
    • 富媒体交互:MCP Apps允许服务器返回UI组件(如机票选座图),提升交互体验。
    • 用户影响:普通用户将体验到AI无缝集成工具(如Notion、Excel、智能家居),无需直接接触底层协议。
  • 开源与标准化的意义
    • 类比TCP/IP和USB标准,MCP可能在未来成为隐形基础设施,推动AI技术普惠化,而非仅限于开发者。

参考文档与链接

  • Linux基金会:https://www.linuxfoundation.org/
  • Agentic AI Foundation:https://agentic.ai/(注:需确认实际官网链接)
  • 相关技术
    • Kubernetes(容器编排):https://kubernetes.io/
    • PyTorch(深度学习框架):https://pytorch.org/
    • JSON-RPC(远程过程调用协议):https://www.jsonrpc.org/

(注:文中未直接提及具体链接,但提及的组织和技术框架可作为参考背景。)

Reference:

https://www.youtube.com/watch?v=PLyCki2K0Lg


<
Previous Post
SurgeAI CEO Edwin Chen interview
>
Next Post
Scale AI要被Meta毁了么