Here is the English translation of the contents:

Document

This document describes several key points mentioned in the third version of DeepSeek’s paper. The following are excerpts and organized into a clear structure:

I. Advanced Error Detection Mechanisms

  • High-performance models using deep learning are essential when handling large datasets.
  • Techniques such as redundant checks with checksums or hardware acceleration should be provided to achieve higher reliability.

II. Overturning Interconnect Architecture

  • Traditional CPUs remain indispensable, but the current architecture faces several critical bottlenecks.
  • Using direct CPU-GPU interconnects like NVLink or Infinity Fabric can eliminate node-level bottlenecks.
  • High memory bandwidth, high single-threaded CPU performance, and sufficient CPU cores on GPUs are required.

III. Intelligent Network Upgrade

  • Future interconnects must prioritize low latency and intelligent networks.
  • Integrating silicon photonics can achieve higher bandwidth scalability and stronger energy efficiency.
  • Credit-Based Flow Control (CBFC) can ensure lossless data transmission but requires deploying advanced endpoint-driven congestion control (CC) algorithms.

IV. “Hardwareization” of Communication Order

  • Using load/store memory semantics for node-to-node communication is efficient and easy to program, but is hindered by memory order constraints.
  • DeepSeek advocates providing inherent order guarantees for memory semantic communications through hardware support.

V. Network Computation Fusion

  • There is still optimization space on the network for distributed and combined stages of MoE models.
  • DeepSeek suggests integrating automatic group replication, hardware-level reduction, and supporting LogFMT compression in network hardware.

VI. Memory Architecture Reconstruction

  • The exponential growth rate of model scales has exceeded the progress speed of high-bandwidth memory (HBM) technology.
  • DeepSeek recommends using DRAM stack accelerators to leverage advanced 3D stacking technology for extremely high memory bandwidth, ultra-low latency, and practical memory capacity.

Translation

这个文档大致描述了 DeepSeek 的第三版论文中提到的几个关键点。以下是摘录并组织为清晰的结构:

一、高级错误检测机制

  • 深度学习模型在处理大规模数据时非常重要。
  • 提供基于校验和或硬件加速的冗余检查等技术来实现更高的可靠性。

二、颠覆互连架构

  • 传统CPU仍然是不可或缺的,但当前架构面临着许多关键瓶颈。
  • 使用直接的CPU-GPU互连如NVLink或Infinity Fabric来消除节点内瓶颈。
  • 需要高内存带宽、高单核CPU性能以及GPU配备足够的CPU核心。

三、智能网络升级

  • 未来的互连必须优先考虑低延迟和智能网络。
  • 集成硅光子学可以实现更高的带宽扩展性和更强的能效。
  • 基于信用的流量控制CBFC可以确保无损数据传输,但需要部署先进的端点驱动拥塞控制CC算法。

四、通信顺序的“硬件化”。

  • 使用load/store内存语义的节点间通信高效便于编程,但受到内存顺序的阻碍。
  • 深度Seek主张通过硬件支持为内存语义通信提供内置的顺序保证。

五、网络计算融合

  • MoE模型的分发与组合阶段仍然存在网络上的优化空间。
  • 深度Seek建议在网络硬件中集成自动分组复制、硬件级归约等功能以及支持LogFMT压缩。

六、内存架构重构

  • 模型规模的指数级增长速度已超过了高带宽内存HBM技术的进步速度。
  • 深度Seek推荐采用DRAM堆叠加速器利用先进的3D堆叠技术实现极高的内存带宽、超低延迟和实用内存容量。

Reference:

https://www.arxiv.org/pdf/2505.09343


<
Previous Post
Mark Zuckerberg interview
>
Next Post
YC: About Vertical AI Agent