Here is the translation:

  1. Multi-step reasoning: Researchers observed Claude using multi-stage reasoning in performing certain tasks, such as calculating “floor(5*(sqrt(0.64)))”, demonstrating its ability to process thought chains internally.
  2. Phantom phenomena: Research found that large language models may exhibit “phantom” phenomena, where they provide seemingly reasonable answers without actual computation. This was observed in Claude, which could provide a plausible answer instead of relying on memory.
  3. Entity suppression: The study showed that Claude has an internal “entity suppression” feature that can inhibit its default “information insufficient” circuit when asked about familiar things. When activated, it can answer questions about known entities, but refuses to do so for unknown ones.
  4. Jailbreaking issue: Researchers induced Claude to output instructions on making a bomb through a strategy that exploited the model’s effort to maintain grammatical and semantic coherence, causing it to overlook safety limitations.
  5. Research limitations: The authors noted limitations in current methods, such as the “AI microscope” only capturing a small part of the computational process, potentially producing artifacts. Additionally, understanding complex thought chains requiring thousands of words requires significant human effort.
  6. Future directions: The authors suggested using AI to assist in analyzing observed content, aiming to gain a deeper understanding of large language models’ internal workings.

This text provides a new perspective on the inner workings of large language models and highlights key challenges required for their improvement.

Translation

本文主要讨论了Anthropic对大语言模型Claude进行的一项研究,该研究揭示了计算机理解和生成人类思维链中的复杂性,以及一些重要的问题。以下是本文的主要内容:

  1. 多步骰推理: 研究人员通过“AI显微镜”观察到Claude在执行某些任务时会使用多阶段推理,例如计算“floor(5*(sqrt(0.64)))”,从而展示出其内部处理思维链的能力。
  2. 幻觉现象: 研究发现,大语言模型可能会出现“幻觉”现象,即在没有实际计算的情况下给出看似合理的答案。这在Claude中体现为,它能够提供一个似乎合理的答案,而不是直接记忆。
  3. 已知实体抑制: 该研究表明,Claude有一个内置的“已知实体”的特征,这个特征可以抑制其默认的”信息不足”电路。当被问到熟悉的事物时,这个特征会激活,使得它能够回答。但是,当面对未知事物时,它将拒绝回答。
  4. 越狱问题: 研究人员通过一个策略诱导Claude输出关于炸弹制作的指示,这种策略基于模型为维持语法和语义连贯性而努力,从而导致它忽视安全限制。
  5. 研究局限性: 作者提到目前的方法存在局限性,例如“AI显微镜”只能捕捉一小部分计算过程,并且可能产生伪影。此外,对于复杂思维链所需的数千个单词进行理解需要大量的人力。
  6. 未来的方向: 作者建议使用AI来辅助理解观察到的内容,以进一步深入了解大语言模型的内部运作机制。

本文为我们提供了一个关于大语言模型内在工作机理的新视角,并突出了理解和改善这些模型所需的重要挑战。

Reference:

https://www.anthropic.com/research/tracing-thoughts-language-model; https://transformer-circuits.pub/2025/attribution-graphs/methods.html; https://transformer-circuits.pub/2025/attribution-graphs/biology.html


<
Previous Post
Deepseek0V3-0324 Gemini2.5-pro GPT-4o
>
Blog Archive
Archive of all previous blog posts