Here is the translation of the contents into English:
A discussion salon on AI security and alignment was held, with experts such as Amanda Askell, Alex Tamkin, Jan Leike, and Josh Bartlett, discussing how to build secure and thought-provoking AI systems.
Key topics included:
1. Effective methods for distinguishing between surface-level alignment and deep-level alignment: Amanda Askell mentioned methods such as interpretability research and red-teaming/blue-teaming validation mechanisms to determine whether models truly understand user input.
2. How to enable AI systems to perform ethical reasoning: She believes that achieving depth of thought is not necessarily dependent on multiple agents, but rather should involve a single model's deep thinking process to better consider human values and interests.
3. Systematic thinking approach: Alex Tamkin emphasized the need for a systematic thinking approach to address security and alignment issues, considering the entire AI system's possible "escape" phenomena, not just individual models.
4. Correctability concept: Amanda Askell introduced the concept of "correctability," highlighting that there is a fundamental tension between responding to individual users' demands and maintaining consistency with overall human interests. Therefore, models should be accountable for their actions in society as a whole.
5. Emergence phenomenon: Jan Leike cited an example where GPT-4 could proficiently read and write base64 encoding while GPT-3.5 could not, illustrating how using weak models to supervise strong models might be circumvented by the latter.
Translation
这段文字描述了一场关于人工智能(AI)安全性和对齐问题的讨论沙龙。沙龙中,几位专家包括阿曼达·阿斯凯尔、亚历克斯·塔姆金、扬·莱克和乔什·巴特森等,探讨了如何构建安全且能与人类进行有深度思考的AI系统。
其中,重点话题包括:
- 有效区分表面对齐和深度对齐的方法:阿曼达·阿斯凯尔提到了可解释性研究、建立红队蓝队对抗性验证机制等方法来区分模型是否真正理解用户输入。
- 怎样让AI系统能够进行伦理推理:她认为,实现深度思考不一定需要多智能体。相反,模型中的伦理推理应该接近单一模型的深度思考过程,以便更好地考虑人类价值观和利益。
- 系统性的思维方式:亚历克斯·塔姆金强调了安全性和对齐问题需要一种系统性的思维方式,不仅关注单个模型,还需要考虑整个AI系统的可能“越狱”现象。
- 可纠正性概念:阿曼达·阿斯凯尔提出了“可纠正性”概念,指出在让模型响应个体用户的需求和与整体人类利益保持一致之间,存在着根本性的张力。因此,模型应该在一定程度上,更倾向于对整个人类社会负责。
- “涌现”现象:扬·莱克举例说明了GPT-4能够熟练地读写base64编码,而GPT-3.5却做不到,这表明用弱模型来监督强模型的方式很可能会被模型绕过。
Reference:
https://www.youtube.com/watch?v=IPmt8b-qLgk