Here are the key points from the Q&A session:

On the importance of data quality:

  • High-quality training data is essential for improving model performance.
  • Having too much low-quality data can actually decrease a model’s ability to perform well on specific tasks.

On the future of LLMs (Large Language Models):

  • The speaker disagrees that we’ve exhausted all high-quality training data, pointing out that there’s still a vast amount of video data waiting to be used.
  • Multimodal models (combining multiple types of data) are an important area of research and may lead to better performance on various tasks.

On the cost of training large models:

  • The cost of training large models prevents small startups from making significant impacts.
  • However, there’s still a wide range of interesting research projects that can be done with limited resources (e.g., one GPU or a handful of GPUs).

On the emphasis on LLMs stifling other work:

  • There is a worry that the focus on LLMs might crowd out other innovative ideas in machine learning.
  • The speaker encourages exploring alternative models and ideas, even if they don’t seem as fully developed.

On multimodal models:

  • Multimodal models (combining multiple types of data) are becoming increasingly important.
  • The speaker sees a future where we deal with 50-100 different modalities of data, not just language and human-centric data.

Translation

**数据质量的重要性:** * 高质量的训练数据对于提高模型性能至关重要。 * 有太多低质量的数据会导致模型在特定任务上的表现能力下降。 **大型语言模型(LLMs) 的未来:** * 讲师不同意我们已经耗尽了高质量的训练数据,指出仍然有大量待利用的视频数据。 * 融合多种类型数据的多模态模型是研究的一个重要方向,它可能带来更好的性能和任务。 **大型模型的训练成本:** * 训练大型模型的费用使得小型初创公司难以产生重大影响。 * 然而,仍然有许多有趣的研究项目可以使用有限资源(例如一块GPU或少量GPU)。 **LLMs 限制其他工作的担忧:** * 关注LLMs会压制出新的创新想法。 * 讲师鼓励探索替代模型和理念,即使它们似乎不太成熟。 **多模态模型:** * 融合多种类型数据的多模态模型变得越来越重要。 * 讲师预见到未来我们将处理50-100个不同的模式,而不是仅仅语言和人类数据。
<
Previous Post
Andrew Ng’s interview on AI’s potential effect @WSJ
>
Next Post
Geoffrey Hinton vs Feifei Li: Responsible AI